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Abstract— Distilling physical laws autonomously from data
has been of great interest in many scientific areas. The sparse
identification of nonlinear dynamics (SINDy) and its variations
have been developed to extract the underlying governing equa-
tions from observation data. The principle of the least action
governs many mechanical systems, mathematically expressed
in the Lagrangian formula. Compared to the actual equation
of motions, the Lagrangian is much more concise, especially
for complex systems. Only a few methods have been proposed
to extract the Lagrangian from measurement data so far.
One of such methods, Lagrangian-SINDy, can extract the
true form of Lagrangian of dynamical systems from data but
suffers when noises are present. In this work, we develop an
extended version of Lagrangian-SINDy (xL-SINDy) to obtain
the Lagrangian of dynamical systems from noisy measurement
data. We incorporate the concept of SINDy and utilize the
proximal gradient method to obtain sparse expressions of the
Lagrangian. We demonstrated the effectiveness of xL-SINDy
against different noise levels with four nonlinear dynamics:
a single pendulum, a cart-pendulum, a double pendulum,
and a spherical pendulum. Furthermore, we also verified the
performance of xL-SINDy against SINDy-PI, a recent robust
variant of SINDy to identify implicit dynamics and rational
nonlinearities. Our experiment results show that xL-SINDy is
8-20 times more robust than SINDy-PI in the presence of noise.

I. INTRODUCTION AND RELATED WORKS

Since the early modern history of humanity, scientists have
always been trying to come up with models that can capture
real-world phenomena. Such models are desired because they
can be used to devise solutions to real-world problems. For
centuries, the process of refining hypothesis and models from
observation data have been conducted manually. Automating
this process has long been of great interest in the scientific
community.

Many attempts have been made to extract physical laws
autonomously from data. With the abundance of data and
cheaper yet powerful hardware, the deep learning-based
methods have gained a lot of attraction and have been widely
used to model and control dynamical systems [1], [2]. It
has also been shown that deep learning is also capable of
approximating invariant quantities from dynamical systems
such as the Hamiltonian [3] and the Lagrangian [4]. However,
deep learning models act as black-boxes; it does not provide
insights on how each observation variable affects and relates
to each other.
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Recent trends, however, favor parsimonious models, mod-
els with the lowest complexity to describe the observation
data. A ground-breaking work done by Schmidt and Lipson
[5] shows us that it is possible to extract the governing
mathematical expressions from observation data. Symbolic
regression is used to find the nonlinear differential equations
that describe the behavior of the system, but symbolic
regression tends to be expensive. The sparse identification
of nonlinear dynamics (SINDy) [6] models nonlinear dif-
ferential equations of dynamics as a linear combination of
nonlinear candidate functions and obtain parsimonious model
through sparse regression.

While there are many applications of SINDy across dif-
ferent fields [7]–[10], SINDy faces certain difficulties when
the dynamics contain rational functions. Including rational
functions into the library of candidate functions would
tremendously increase the size of the library, making the
sparse regression challenging. A modification of SINDy,
implicit-SINDy [11], reformulates the SINDy problem into
implicit form to address this challenge, albeit this method is
sensitive to noise. SINDy-PI [12] is proposed to improve the
performance of implicit-SINDy in terms of noise robustness.

The principle of least action is fundamental to many
dynamical systems [13]. The principle states the trajectory
chosen by the system is the one that minimizes a certain
cost function. This cost function is the so-called ’action,’ or
often known as the Lagrangian. Compared to the underlying
differential equations, Lagrangian has a desirable property in
which it is a single scalar quantity that contains all informa-
tion to predict the behavior of the systems. In robotics, the
derivation of the dynamics often starts from the Lagrangian
of the systems.

Several works have been proposed to approximate the
Lagrangian from data with polynomial basis functions [14],
[15]. However, approximating Lagrangian with polynomial
basis functions will only be useful for a particular trajectory
of the system and will not likely generalize well across dif-
ferent initial conditions. Lagrangian-SINDy [16] is a SINDy-
based method designed to extract the Lagrangian of nonlinear
dynamics and is shown to be able to retrieve the true form
of Lagrangian of several dynamical systems. However, the
author mentioned in the paper that Lagrangian-SINDy is
sensitive to noise and cannot recover the Lagrangian when
the training data is corrupted even with small amounts of
noise. Noise will always present in real-world systems, and
developing a robust method against noise is important for
real-world application.

In this work, we propose a method called extended



Lagrangian-SINDy (xL-SINDy) that can discover the true
form of Lagrangian and is more robust in the presence of
noise compared to Lagrangian-SINDy. We demonstrated the
effectiveness of xL-SINDy against different noise levels in
physical simulation with four dynamical systems: A single
pendulum, a cart-pendulum, a double pendulum, and a spher-
ical pendulum. This paper is organized as follows. Section
II describes how we use basic ideas from previous works
to formulate the problem and develop the learning method.
Section III presents the results of simulation experiments on
the aforementioned dynamical systems. Section IV provides
closing and remarks.

II. METHOD

A. Problem Formulation

Inspired by the concept of SINDy [6], we consider a
Lagrangian expression in a structure of a linear combination
of nonlinear candidate functions. Let q = (q1, q2, ..., qn) be
the configuration of a system in a generalized coordinate of
a system, the Lagrangian of the system is expressed as

L =

p∑
k=1

ckφk(q, q̇), (1)

where, φk(q, q̇), k = 1, ..., p are a set of nonlinear candi-
date functions, and ck, k = 1, ..., p are the corresponding
coefficients. We are interested to find the value of c =
(c1, c2, ..., cp) where we believe that the majority of the
coefficients are zero. The Lagrangian of the system satisfies
the Euler-Lagrange equations given by

d

dt
∇q̇L −∇qL = τext, (2)

where (∇q)i ≡
∂
∂qi

. We consider three different scenarios:
• Case I : External input τext of the system is provided.
• Case II : No external input is provided.
• Case III : Prior Lagrangian knowledge of a simpler sys-

tem that forms a constituent of the system is provided.
1) With External Input: In the case where input τext is

provided, substituting (1) in (2) yields

d

dt

p∑
k=1

ck∇q̇φk −
p∑
k=1

ck∇qφk = τpred, (3)

where τpred is the predicted value of the external input τext
given a set of coefficient c = (c1, c2, ..., cp). We can further
expand the time derivative d

dt by using chain rule, giving us
the terms q̇ and q̈

(
p∑
k=1

ck∇>q̇∇q̇φk

)
q̈ +

(
p∑
k=1

ck∇>q∇q̇φk

)
q̇−(

p∑
k=1

ck∇qφk

)
= τpred.

(4)

To avoid verbose notation, we define the following notations

M(c, q, q̇) =

p∑
k=1

ck∇>q̇∇q̇φk, (5)

N(c, q, q̇) =

p∑
k=1

ck∇>q∇q̇φk, (6)

O(c, q, q̇) =

p∑
k=1

ck∇qφk. (7)

Substituting (5), (6), and (7) in (4) yields

τpred = M(c, q, q̇)q̈ + N(c, q, q̇)q̇ −O(c, q, q̇), (8)

and we define the following cost function that we want to
minimize to obtain the Lagrangian of the system

J(c) = ‖τext − τpred(c)‖22. (9)

2) Without External Input: In the case of passive systems,
in which no external input τext is not provided, eq. (8) can
be modified so that we can solve for q̈pred expressed as

q̈pred = M(c, q, q̇)−1 (O(c, q, q̇)−N(c, q, q̇)q̇) , (10)

where q̈pred represents the predicted value of acceleration
q̈ and (·)−1 represents matrix inverse. In practice, we use
Moore-Penrose pseudo inverse to calculate eq. (10) since
there is no guarantee that the matrix is not a singular matrix.
We define the following cost function to learn the Lagrangian
of the system

J(c) = ‖q̈ − q̈pred(c)‖22. (11)

Solving the optimization for the above cost function is
really challenging due to the inverse operation, hence making
equation (11) is highly non-convex with respect to variable
c. We empirically found that with a library of more than
20 candidate functions, the learning process will hardly
converge even after a long period of iterations. Therefore,
this problem usually only works for simple systems such
as a single pendulum. For more complex systems, it is
preferable that either the external input τext is provided,
or prior Lagrangian knowledge of a simpler system that
forms a constituent of the larger system is provided to boost
the learning process which will be explained in the next
paragraph.

3) With Prior Knowledge: For multi-DOF non-relativistic
systems, the Lagrangian can be described as L =

∑
i Ti −∑

i Vi =
∑
i (Ti − Vi), where Ti and Vi are the kinetic

energy and potential energy of each constituent of the system.
Since the total Lagrangian of the system is the sum of
Lagrangian of its constituents, it is reasonable to assume that
the nonlinear terms that appear in each constituent will also
appear in the total Lagrangian of the system [16].

Given prior knowledge of a constituent of the system,
we pick one out of several terms that appear in the to-
tal Lagrangian of the system and label them as φr(q, q̇).
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Fig. 1: Block diagram of the proposed method (xL-SINDy). Depending on the case of the problem, a different cost function
is constructed. Once the cost function is defined, the cost function is minimized by using proximal gradient descent method.

The Lagrangian of a system is not unique; many forms
of Lagrangians can satisfy Euler-Lagrange’s equation for
a particular system. For example, L′ = kL, where k is
a constant, still satisfies the Euler-Lagrange’s equation. By
multiplying equation (1) with k = 1

cr
, eq. (1) can be modified

as

L = φr(q, q̇) +

p∑
k=1
k 6=r

c′kφk(q, q̇), (12)

where c′k = ck
cr

. Now, the variable c′k becomes the co-
efficients that we are interested to solve. We can simply
redefine ck := c′k for notation simplicity. The Euler-Lagrange
equation of the system can be expressed as

d

dt

p∑
k=1
k 6=r

ck∇q̇φk −
p∑
k=1
k 6=r

ck∇qφk = − d

dt
∇q̇φr +∇qφr.

(13)

We define the following notation

Υleft =
d

dt

p∑
k=1
k 6=r

ck∇q̇φk −
p∑
k=1
k 6=r

ck∇qφk

= M′(c, q, q̇)q̈ + N′(c, q, q̇)q̇ −O′(c, q, q̇),

(14)

Υright = −
d

dt
∇q̇φr +∇qφr

= −
(
∇>q̇∇q̇φr

)
q̈ −

(
∇>q∇q̇φr

)
q̇ +∇qφr,

(15)

where Υleft and Υright represent the left hand side (LHS)
and the right hand side (RHS) of eq. (13). By minimizing
the following cost function

J(c) = ‖Υright −Υleft(c)‖22, (16)

it is possible to obtain the true Lagrangian of the system.
We usually have more than one option of φr to construct
Υright. In practice, we have to test all of them one by one
and choose the one that yields the best model.

B. Learning Lagrangian

The proposed learning method to obtain the Lagrangian
is summarized in Fig. 1. We start with the prob-
lem formulation as described in the previous section.
Given a dynamical system, we gather times series data
{ti, q(ti), q̇(ti), q̈)(ti, τext(ti)}Ni=1 from several initial con-
ditions. We then proceed to construct a library of candidate
functions.

In general, the larger the library of the candidate functions,
the more difficult the optimization problem becomes. It is
especially true when several candidate functions can behave
in a similar manner, such as in the trigonometric family
functions. It is important to carefully construct a sufficient
library but not too large so that the optimization problem is
still tractable. It is also important, however, not to include
trivial terms that satisfy Euler-Lagrange’s equation regardless
of trajectories such as L = qnq̇. Depending on the case of
the problem, a different cost function should be defined.

As mentioned previously, we believe that the correct
solution is sparse where the majority of the coefficients are



zero. Therefore, we add L1 regularization term to the cost
function for sparsity constraint [17] expressed as

J ′(c) = J(c) + λ‖c‖1, (17)

where λ is the sparsity promoting parameter that we have
to carefully tune. In this work, we use accelerated proximal
gradient descent method [18] to minimize the composite cost
function defined above. Given an initial point c0, the update
step of proximal gradient descent is defined as

v = ci−1 +
i− 2

i+ 1

(
ci−1 − ci−2

)
, (18)

ci = proxL1 (v − α∇J(v)) , (19)

where ci is the coefficient c at iteration i, α is the learning
rate, and proxL1(·) is the proximal operator for L1 norm.
The L1 norm penalty term is a separable sum of the
component of its input, and a proximal operator is used to
minimize this term. The proximal operator for L1 norm is
well defined separately for each component of the input and
expressed as follows,

[proxL1(β]k = sign(βk)max(|βk|−λ, 0), (20)

where k is the kth entry of the input vector β. As for case
III, if we know other terms that appear in the Lagrangian
but are not used to construct Υright, we don’t put a penalty
on these terms by not applying the proximal operator in eq.
(20) for index k corresponding with these terms.

We proceed to initialize the value of the coefficient c,
the learning rate α, and the L1 norm penalty parameter λ.
The learning process is done in several stages, with 100
epochs and batch size equal to 128 for each stage, until the
cost function reaches the defined tolerance value as shown
in Fig. 1. The tolerance value is ideally at 10−3. However,
converging to this value might not be possible in the presence
of noise, and we have to relax the tolerance value; otherwise,
the algorithm will never stop. In the beginning, the number
of candidate functions in the library is usually large, and
we want to eliminate non-relevant candidate functions as
much as possible during the first learning stage. Therefore,
we initially set the value of λ to be quite high, which is
between 1 and 5.

It is important to note that every candidate function
may have different magnitude scales. The L1 norm penalty
penalizes all terms equally regardless of the magnitude scale,
resulting in candidate functions with smaller magnitude
scales being penalized more. It may or may not be necessary
to do scaling in the first learning stage, where the value
of λ is high, by multiplying each candidate function with
scaling term sk in eq. (1) for the case I and II, or eq.
(12) for case III depending on the differences of magnitude
scale between each candidate function. The learning rate is
also an important hyper-parameter, especially during the first
learning stage. We found that a high learning rate in the
initial stage can cause the relevant terms to be penalized,
preventing the model from obtaining the true Lagrangian of
the system. During the initial stage, we set the learning rate
α <= 10−5.

Fig. 2: Dynamical systems used to verify xL-SINDy. From
upper left to bottom right: A single pendulum, a cart-
pendulum, a spherical pendulum, and a double pendulum.
For all systems, the length of the rod is L = 1.0 m, the
mass of all pendulums are m = mp = m1 = m2 = 1.0 kg,
and the gravitational acceleration is g = 9.81 m/s2. For the
cart-pendulum, the mass of the cart is mc = 0.5 kg.

At the end of every learning stage, we perform hard-
thresholding by removing index k from eq. (1) or (12),
where the value of ck < threshold. This step effectively
reduces the number of candidate functions considered in
the learning process, making the convergence much faster
than if hard-thresholding were not performed. We then check
whether the cost function has reached the tolerance or not.
If it is the latter, we proceed to the next learning stage.
With fewer candidate functions after the previous hard-
thresholding process, we can decrease the value of λ and
increment the learning rate α to speed up the learning
process. This step is repeated over and over again until the
cost function reaches the tolerance value. Once the tolerance
value is reached, we compute the value of the coefficient to
the eq. (1) for the case I and II, or (12) for case III, and we
obtain the analytical form of Lagrangian of the system.

C. Dynamical Systems and Experiments

We evaluated xL-SINDy with four ideal dynamical sys-
tems as shown in Fig. 2. In this work, we focus on the case
of passive systems where no external input τext is provided.
No prior knowledge is used for a single pendulum in the
learning process, and we use the computation described
by case II. For the cart-pendulum, double pendulum, and
spherical pendulum, we use the computation described by
case III under the assumption that we already obtained the
Lagrangian of a single pendulum.

For each system, we collect training data by performing
simulation with 100 initial conditions for a period of 5s each
and 100 Hz of measurement frequency. After obtaining the
analytical form of the Lagrangian, we create a validation
data set to test the obtained model by calculating the pre-



TABLE I: Extracted Lagrangian from simulation data with various noise levels

Physical systems
Noise Magnitude Single Pendulum Cart Pendulum Double pendulum Spherical Pendulum

True Model 0.500θ̇2 + 9.810 cos θ

0.250θ̇2 + 0.750ẋ2

+ 0.500ẋθ̇ cos θ

+ 4.905 cos θ

19.620 cos θ1 + 9.810 cos θ2

+ 1.000θ̇1θ̇2 cos θ1 cos θ2

+ 1.000θ̇1θ̇2 sin θ1 sin θ2

+ 1.000θ̇1
2
+ 0.500θ̇2

2

0.500φ̇2 sin2 θ + 0.500θ̇2

+ 9.810 cos θ

σ = 0 0.295θ̇2 + 5.797 cos θ

1.000θ̇2 + 2.975ẋ2

+ 1.984ẋθ̇ cos θ

+ 19.755 cos θ

19.620 cos θ1 + 9.750 cos θ2

+ 1.000θ̇1θ̇2 cos θ1 cos θ2

+ 0.999θ̇1θ̇2 sin θ1 sin θ2

+ 1.000θ̇1
2
+ 0.499θ̇2

2

1.000φ̇2 sin2 θ + 1.000θ̇2

+ 19.630 cos θ

σ = 10−3 0.268θ̇2 + 5.252 cos θ

1.000θ̇2 + 2.975ẋ2

+ 1.984ẋθ̇ cos θ

+ 19.756 cos θ

19.508 cos θ1 + 9.755 cos θ2

+ 1.000θ̇1θ̇2 cos θ1 cos θ2

+ 0.999θ̇1θ̇2 sin θ1 sin θ2

+ 1.000θ̇1
2
+ 0.499θ̇2

2

1.000φ̇2 sin2 θ + 1.000θ̇2

+ 19.630 cos θ

σ = 2× 10−2 0.334θ̇2 + 6.540 cos θ

1.000θ̇2 + 2.993ẋ2

+ 1.994ẋθ̇ cos θ

+ 19.534 cos θ

19.545 cos θ1 + 9.770 cos θ2

+ 1.000θ̇1θ̇2 cos θ1 cos θ2

+ 0.999θ̇1θ̇2 sin θ1 sin θ2

+ 1.000θ̇1
2
+ 0.499θ̇2

2

1.000φ̇2 sin2 θ + 1.000θ̇2

+ 19.600 cos θ

σ = 6× 10−2 0.557θ̇2 + 10.938 cos θ

1.000θ̇2 + 1.696ẋ2

+ 1.136ẋθ̇ cos θ

+ 18.082 cos θ

− 0.121ẋ2 cos θ

+ 1.463 cos3 θ
∗

19.541 cos θ1 + 9.753 cos θ2

+ 0.999θ̇1θ̇2 cos θ1 cos θ2

+ 0.999θ̇1θ̇2 sin θ1 sin θ2

+ 1.000θ̇1
2
+ 0.496θ̇2

2

0.130φ̇2 sin2 θ + 1.000θ̇2

+ 2.350 cos θ

− 0.790θ̇2 sin θ

− 0.430θ̇2 cos θ
∗

σ = 10−1

0.085θ̇2 + 1.540 cos θ

− 0.129θ̇ sin θ

+ 0.551 sin2 θ

− 0.019θ2
∗

1.000θ̇2 + 1.562ẋ2+

1.050ẋθ̇ cos θ

+ 19.504 cos θ

− 0.143θ̇2 cos θ
∗

19.381 cos θ1 + 9.679 cos θ2

+ 0.998θ̇1θ̇2 cos θ1 cos θ2

+ 0.992θ̇1θ̇2 sin θ1 sin θ2

+ 1.000θ̇1
2
+ 0.495θ̇2

2

− 0.2φ̇2 sin2 θ + 1.000θ̇2

+ 5.12 cos θ

− 1.100θ̇2 sin θ

− 0.560θ̇2 cos θ

− 0.055φ̇2 sin 2θ
∗

∗Terms highlighted with red color are extra terms that are not supposed to be included in the Lagrangian.
All numbers are rounded to 3 decimal places.

dicted states for the accuracy evaluation. We compute the
Euler-Lagrange’s equation with the obtained model, retrieve
the differential equation of the system, and integrate the
equations to compare it with the actual validation data. We
also tested our method with training data that are corrupted
by zero-mean white Gaussian noise N (0, σ) on different
scale magnitude in the range of 10−8 <= σ <= 10−1.
Finally, we also compare the performance of xL-SINDy
on cart-pendulum, double pendulum, and sphere pendulum
with noisy training data against Lagrangian-SINDy [16], and
SINDy-PI [12].

III. RESULTS

In this section, we demonstrate the effectiveness of xL-
SINDy with the aforementioned nonlinear dynamical sys-
tems against various noise levels. The obtained Lagrangian
for each system is summarized in Table. I. The accuracy of
xL-SINDy and SINDy-PI from our simulation experiments
on a cart pendulum, a double pendulum, and a spherical

pendulum is shown in Fig. 3. In the second column of the
plot in Fig. 3, where the noise magnitude is σ = 2× 10−2,
we can observe that SINDy-PI already starts to deviate from
the true models in all three dynamical systems. At the same
noise magnitude, xL-SINDy still predicts accurate models.
It is also good to note that the model estimate of xL-SINDy
is still reasonable even though wrong additional terms are
included in the Lagrangian from the example of the cart
pendulum under the noise magnitude of σ = 6 × 10−2. It
indicates that the model estimate is potentially usable even
when an incorrect Lagrangian structure is discovered. Our
simulation results demonstrate that xL-SINDy has notably
better prediction accuracy compared to SINDy-PI in the
presence of higher noise magnitude in all three dynamical
systems.

A. Single Pendulum
The state of a single pendulum is described be [θ, θ̇], and

the Lagrangian expression of a single pendulum is given by
L = 1

2mθ̇
2 + mg cos θ, Substituting the parameter given



Fig. 3: Simulation results against three different noise levels for three different models: the true model, model discovered by
the proposed method, and model discovered by SINDy-PI. Training data consists of 100 initial conditions in a time period
of 5 seconds each. Validation (extrapolation beyond the training data set) is conducted for 5 seconds afterward. The results
shown are taken randomly from one of the initial conditions from the training data set for cart pendulum, double pendulum,
and spherical pendulum.

in Fig. 2, the true Lagrangian expression is shown in the
second row and second column of Table. I. To construct
a library of candidate functions, we create a polynomial
combination of {θ, θ̇, cos θ, sin θ} up to the second order
while excluding trivial terms such as θ̇ and θθ̇ resulting in
12 candidate functions. Training data with initial conditions
of [−π < θ < π, 0] are created.

The initial value of the hyperparameters are α = 10−5 and
λ = 0.1. The cut-off threshold is 10−2 for the initial learning
stage and 10−1 for the subsequent learning stages. In the
subsequent learning stages, α is increased by a factor of 2,
and λ is decreased by a factor of 10. The training converged
in three stages for noise magnitude σ <= 10−3, and four
stages for higher magnitude with a relaxed tolerance value.
The correct Lagrangian structure, ones without additional
terms or missing terms compared to the true Lagrangian
form, can be obtained in the presence of noise magnitude
up to σ = 6 × 10−2. Even though the coefficients obtained
differ from the true model, the ratio of coefficients between
the two terms is close compared to the true model.

B. Cart Pendulum

The state of cart pendulum is represented as [θ, θ̇, x, ẋ],
and the Lagrangian with numerical coefficients is shown in

the second row and third column of Table. I with parameters
given by Fig. 2. A library of candidate function with a poly-
nomial combination of {θ̇, cos θ, sin θ, x, ẋ} up to the third
order is constructed, resulting in 55 candidate functions.We
here exclude the term θ because this term does not appear in
the Lagrangian of a single pendulum system. Training data
with initial conditions of [−π < θ < π, 0, 0, 0] are created.

The Lagrangian of a single pendulum contains θ̇2 and
cos θ. Hence, both terms will also appear in the Lagrangian
of the cart pendulum. We tested both θ̇2 and cos θ to
construct Υright as described in eq. (15), and we found
that the term θ̇2 gives better results. The initial value of
the hyperparameters are α = 10−5 and λ = 1. The cut-
off threshold, the increment of α, and the decrement of λ
are the same as the previous case. The training converged
in three stages for noise magnitude σ <= 2 × 10−2, and
four stages for higher magnitude with a relaxed tolerance
value. xL-SINDy can recover the correct structure of the
Lagrangian with noise magnitude up to σ = 4 × 10−2. In
contrast, even in the case of external input force on the cart,
SINDy-PI can only recover the correct structure with noise
magnitude up to σ = 5 × 10−3. Therefore, in the case of
the cart pendulum, xL-SINDy is 8 times more robust than
SINDy-PI in the presence of noise.
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Fig. 4: Comparison of the maximum level of manageable
noise in training data before an incorrect model structure
is discovered for three methods: xL-SINDy, SINDy-PI,
Lagrangian-SINDy. The noise level is transformed in − log10
scale, and a lower value in the scale represents a larger
noise level. xL-SINDy provides the most robust performance
against noisy training data in all simulations of three different
dynamical systems.

C. Double Pendulum

Given the state of a double pendulum, [θ1, θ2, θ̇1, θ̇2]
and the system parameters in Fig. 2, the expression of
the Lagrangian with numerical coefficients is shown in the
second row and fourth column of Table. I. To build a
library of candidate functions, we first separate the set of
trigonometric terms {cos θ1, sin θ1, sin θ1, sin θ2}, and the
non trigonometric terms {θ̇1, θ̇2}. For each set, we create
a polynomial combination up to the second order, resulting
in 14 candidate functions and 5 candidate functions respec-
tively. We then generate cross terms between the two sets
creating 70 candidate functions, and we have in total 89
candidate functions in the library. Training data are created
with initial conditions of [−π < θ1 < π,−π < θ2 < π, 0, 0].

Both constituents of double pendulum are a single pendu-
lum. Hence, we have 4 options to construct Υright: θ̇1

2
,

θ̇2
2
, cos θ1, and cos θ2. Both θ̇1

2
and θ̇2

2
yield equally

good results. The results displayed in Table. I is the one
with θ̇1

2
used to construct Υright. The initial value of the

hyperparameters are α = 5 × 10−6 and λ = 1. The cut-off
threshold, the increment of α, and the decrement of λ are the
same as in previous cases. From our experiments, xL-SINDy
can identify the correct structure with noise magnitude up
to σ = 1 × 10−1, while SINDy-PI can extract the correct
structure of equations of motions with noise magnitude up
to σ = 10−2. Hence, xL-SINDy is 10 times more robust
against noise than SINDy-PI in this experiment.

D. Spherical Pendulum

The state of cart pendulum is represented as [θ, φ, θ̇, φ̇],
and the true Lagrangian expression is displayed in the
second row and fifth column of Table. I. As in the case of
double pendulum, we first separate the trigonometric terms
{cos θ, sin θ} and the non trigonometric terms {θ̇, φ, φ̇},
create a polynomial combinations for both sets up to the
second order, and add cross terms between the two sets. In
total, we have 59 candidate functions in our library. The
training data are created with initial conditions of [π/3 <
θ < π/2, 0, 0, π]. We deliberately choose high value of θ
and φ̇ as the initial conditions because the equation of motion
contains 1

sin θ which could blow up for small value of θ.
The spherical pendulum is a higher dimensional analog of

a single pendulum in the first case. Therefore, we can think
of the Lagrangian of a spherical pendulum as the sum of
Lagrangian of the pendulum in θ̂ direction and φ̂ direction.
Since we already know the Lagrangian of a single pendulum
in θ̂ direction, we can use θ̇2 and cos θ to construct Υright.
The initial value of the hyperparameters are α = 1 × 10−5

and λ = 1. The cut-off threshold, the increment of α, and
the decrement of λ are the same as in all previous cases. In
this experiment, xL-SINDy shows 20 times more robustness
against noise than SINDy-PI. The correct structure can be
obtained with noise magnitude up to σ = 2 × 10−2 by xL-
SINDy, and σ = 1× 10−3 by SINDy-PI.

IV. DISCUSSION

The comparison of xL-SINDy, SINDy-PI, and Lagrangian-
SINDy is summarized in Fig. 4. In all three dynamical
systems used as a comparison, xL-SINDy outperforms other
methods in terms of noise robustness. Our experiment results
demonstrate that xL-SINDy can overcome the challenge
faced by Lagrangian-SINDy. xL-SINDy is capable of dis-
covering the correct Lagrangian expression for idealized
nonlinear dynamical systems in the presence of much higher
noise magnitude. On top of that, xL-SINDy successfully
extracts the Lagrangian in cases where Lagrangian-SINDy
fails to do so, such as the non-actuated spherical pendulum
[16]. The obtained coefficients may not be precisely the same
as the true models, but the ratio between coefficients of each
term is close to the true models.

From our experiments, while SINDy-PI is also robust
against noise up to a certain magnitude, xL-SINDy is 8 to 20
times more robust against noise. SINDy-PI attempts to seek
the expression of the dynamics which may contain rational
functions. To do so, SINDy-PI reformulates the problem into
implicit form, and it requires the library to include candidate
functions of the states and the time derivative of the states
of the systems. Unlike SINDy-PI, xL-SINDy only works
with non-rational functions, hence only requires the library to
include functions of the states, resulting in a simpler library.
On top of that, SINDy-PI may have a problem when the
incorrect combination of denominator terms is discovered. In
rational function, when the denominator is equal to zero, its
value blows up. Indeed, this is the case of SINDy-PI in some
of our experiment results when SINDy-PI cannot handle the



noise and discover the wrong combination of denominator
terms.

One major limitation of xL-SINDy is the difficulty in
designing the library. Prior knowledge of the systems is
essential to decide what candidate functions we should
include in the library. A large number of candidate functions
in the library are more likely to be sufficient, but it makes
the sparse optimization more challenging and less robust
against noise [12]. Hence, balancing this trade-off is crucial
for the outcome of the learning process. Unless we develop
a better way to construct the library, applying xL-SINDy to
more complex systems with a higher degree of freedom is
still challenging as the number of candidate functions grows
rapidly.

Like other learning-based methods, SINDy-PI introduces
several hyperparameters during the learning process, such as
the sparsity constrain λ, the learning rate α, the tolerance
for the cost function, and the cut-off threshold in the hard-
thresholding process. Tuning the hyperparameters is also
vital for the learning outcome, especially the initial value
of learning rate α and sparsity constraint λ. The process of
hyperparameter tuning is currently done manually with trial
and error. Algorithms specifically designed to optimize the
hyperparameters such as Optuna [19] can be used to fully
automate the learning process.

So far, we have not considered the presence of external
non-conservative force acting on the systems. In real-world
scenarios, no matter how small, non-conservative forces
such as damping or friction are always present. Taking into
account this external force in the model is of importance
to make xL-SINDy applicable to real systems. One possible
way to incorporate non-conservative force is by using the
generalized Rayleigh’s dissipation function [20]. Like the
Lagrangian, Rayleigh’s dissipation function is a single scalar
quantity and can be incorporated into Euler-Lagrange’s equa-
tion. We can model the generalized Rayleigh’s dissipation
function as a linear combination of candidate functions and
learn both Lagrangian and Rayleigh’s dissipation function
simultaneously.

V. CONCLUSION

This work introduced xL-SINDy, a method to extract
the Lagrangian of nonlinear dynamical systems from noisy
measurement data. We model the Lagrangian as a linear
combination of nonlinear candidate functions and use Euler-
Lagrange’s equation to formulate the objective cost function.
We use the proximal gradient method to optimize the cost
function and obtain sparse expression of Lagrangian. We
demonstrated the effectiveness of xL-SINDy and showed
that xL-SINDy is more robust against noise compared to
other methods. It is worth noting that our proposed method
outperforms SINDy-PI (parallel, implicit), a recent robust
variant of SINDy developed for implicit dynamics and ratio-
nal nonlinearities. We believe that xL-SINDy is a promising
approach for the identification of interpretable models of
nonlinear dynamics. The focus of our next work is to

consider non-conservative forces in the model and apply xL-
SINDy to real systems.
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